Magnetecs Newletter Signup  Magnetecs Facebook
Stay Connected with Us

News Articles

Magnetecs in Control Engineering

Contact Information

10524 La Cienega Blvd
Inglewood, California, 90304
Tel: 310.670.7700

Contact email

technical support
sales and marketing

Magnetecs in Control Engineering

January 01, 2010
Manually navigating the twists and turns of an artery, and performing a therapeutic procedure within a human heart, demand high degrees of surgical training, practice and manual dexterity. A wrong move could tear a blood vessel or puncture a heart wall. Aerospace and defense technology pioneer Josh Shachar knew automation could deliver a better way to move an electrophysiology (EP) catheter than by hand. He envisioned a system that would use electromagnetic fields, instead of manual prodding, to help a physician perform the procedure.

Shachar, founder and president of Inglewood, CA-based Magnetecs and maker of the Magnetecs Catheter Guidance Control and Imaging System (CGCI), says, “At the core of any engineering task is the fundamental and unassailable belief that a solution is possible.” What comes next is a combination of vision, teamwork and technology that can implement the solution and, in this case, get a new medical machine into human clinical trials fast. A control platform with easily implemented hot back up capability was one of the keys.

“The speed of getting CGCI to human clinical trials would not have been possible if Magnetecs chose a different platform,” says RK Controls general manager Robert Karkafi. “I have seen companies using other platforms where they have spent months and months writing code to make sure the hot back up is operating correctly.” Magnetecs’ choice, however, came preprogrammed as a standalone unit.

Physicians rely on cardiac ablation to treat arrhythmia – an abnormal heartbeat – in a procedure using an EP catheter pushed by hand through a blood vessel into a heart chamber. When the normally operating electrical system of the heart is blocked or travels erratically, it creates a “short circuit” that disturbs normal heart rhythms. Often the most effective treatment is to destroy the tissue at the location of the short circuit using the EP catheter for cardiac ablation. Beginning in 1997, Shachar, later joined by Magnetecs’ chief scientist Laszlo Farkas and vice president of engineering Leslie Farkas, produced several promising, small-scale prototypes. Today, the CGCI system they developed is entering the human testing stage.